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LETTER TO THE EDITOR

Charge fluctuations in the edge states of
normal-superconducting hybrid nano-structures

Andrew M Martin, Thomas Gramespacher and MarkiigtiBer
Département de Physique ddrique, Universé de Gerve, CH-1211 Gegve 4, Switzerland

Received 6 October 1999

Abstract. In this work we show how to calculate the equilibrium and non-equilibrium charge
fluctuations in a gated normal mesoscopic conductor which is attached to one normal lead and
one superconducting lead. We then consider an example where the structure is placed in a high
magnetic field, such that the transport is dominated by edge states. We calculate the equilibrium
and non-equilibrium charge fluctuations in the gate, for a single edge state, comparing our results
to those for the same system, but with two normal leads. We then consider the specific example of
a quantum point contact and calculate the charge fluctuations in the gate for more than one edge
state.

1. Introduction

Recently a methodology for calculating charge fluctuations in gated hybrid normal—
superconducting (N-S) systems has been formulated [1]. In this letter we implement this
methodology for one particularly relevant and enlightening example. We study the system
depictedin figure 1, i.e. a gated N—S system in a high magnetic field, where the transport in the
normal region is governed by edge states. We focus on calculating the charge fluctuations in
the edge states in the regign This work coincides with recent experimental and theoretical
research into the properties of hybrid normal-superconducting structures in high magnetic
fields [2-5].

In this letter we first calculate the unscreened charge fluctuations for a general N-S
structure (section 2). Then we proceed to incorporate screening into the problem (section 3),
enabling us to calculate the spectra of charge fluctuations in a gated N-S structure. We show
that these spectra, at equilibrium, are determined by two quantities: the charge relaxation
resistanceR,, and the electrochemical capacitariGg In the presence of transport, we find
that R, is replaced byRy, called here the Schottky resistance, which reflects the shot noise
of the structure. Then we focus on one particular example (section 4) an N-S structure in a
high magnetic field, see figure 1. In particular we are interested in the charge fluctuations in
the edge states in the regiéhof figure 1 which can be measured by observing the current
fluctuations at the gat8;; (w, V) = a)ZSQQ(a), V). We consider a general case of a single
edge state and an arbitrary scatterer and more than one edge state in the case where the scatterer
is a quantum point contact.
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Figure 1. Quantum point contact, in the presence of a high magnetic field, attached to one normal
lead and a superconducting lead, capacitively coupled to a macroscopic gate. The solid (dashed)
lines depict thenotionof the electron (hole) edge states.

2. Calculating the unscreened charge fluctuations

Consider a conductor where we have one normal lead and one superconducting lead, we can
write an effective 2x 2 scattering matrix for this system,

§= < Sep Shp ) 1)
Sph Shh
where thes,, are elements of the scattering matrix describing the process of an electron
(» = p) or hole ¢ = h) entering from the normal lead and an electraon£ p) or hole

(i = h) returning to the normal lead. Making use of tiisnatrix [1, 6] we can write down
the local particle density of states elements at positias

-1
0T = [sIa(E, Ur)) 2)

35,5 (E.U(r)) 3s)4(E, U(r))
Uy S*“(E’Q(T))—qﬂaU'I(r)

wherea, 8, A andn denote the electron/hole degrees of freedpi) andg? = e = —g".
The functional derivatives are taken at the equilibrium electrostatic potéhtiat U" = U,,.
Togive an examplevlﬁ‘h (h, r) isthe hole density associated with an electron and a hole current
amplitude incident from the normal lead and reflected back into the normal lead as an outgoing
hole amplitude. With the help of this basic expression we can now find both the average density
of states as well as the fluctuations. The total bare charge fluctuations in the conductor are
given by

Nap = —Nig + N (3)

where
Ny = /Q d®r Y N m). (4)
A
The hole density of states of a regi@nof the conductor isv" = N"(p) + N”(h) where

N')=)" /Q dBrTrNE, O, )] (5)
A
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and the electron density of statesNg = N”(p) + N”(h) with
NP(a) =) / dPrTrINE, (1, 7)) (6)
A Q

The trace is over open quantum channels;(8) is the injectivity of electrons (holes)
(B = p(h)), from the normal lead into the conductor, given a change in the particle (hole)
potential ¢ = p(h)).

The fluctuations of the bare charge in a regioof interest can be found from the charge
operatore N/ given by

eN(w) =Y /Q d*r / dE[a} (E)g"NJy (L. 7 E. E + hw)ag(E +hw)]  (7)
ap

where the zero-frequency limit ;’ﬂ (A, r; E, E+hw) isgiven by equation (2). Inequation (7),
al(E) (a,(E)) creates (annihilates) an incoming electron/hale<( p/ k) in the normal lead.

The true charge fluctuations must be obtained by taking into account the Coulomb interaction
and below we show how to obtain the true charge fluctuations from the fluctuations of the bare
charges.

3. Calculating the total charge fluctuations

Consider an N-S system where we have a gate, Coulomb coupled, to a fegibthe normal

part of the system. Then, assuming the gate has no dynamics of its own, the charge in the region
coupled to the gate is given iy = CU whereU is the operator for the internal potential of

the conductor. Also we can determine the cha@as the sum of the bare charge fluctuations

eN and the induced charges generated by the fluctuating induced electrical potential. In the
random phase approximation the induced charges are proportional to the average frequency-
dependent density of statés; (») times the fluctuating potential. Hence, the net charge can

be written asQ = CU = eN — ¢2Nx(w)U, this is the direct analogue of the result for a
system with two normal leads [7]. Thus

U= GeN ®)
where

G) = — ©

@)= C + e2N5x (w)

and the total density of states is

Ns = 3[N”(p) = N?(h) + N"(h) — N"(p)]. (10)
We now wish to find the fluctuation spectra of the internal potential [8]

27 Syu (@)8(w — o) = (1/2)(U (@)U (@) + U (@)U (). (11)

Solving the above and making use of the fact &8,y (w, V) = Soo(w, V) we find

Soo(®, V) = (1/2)CiN5? Z / dEF,4(E, E +ho)Tr[Nys(E, E + Ea))NJﬁ(E, E +ho)]
af

(12)
where
Naﬂ(E, E,) =ngr(q”)/ dST'N ()\, r; E, E) (13)
ni
2
c, = L= (14)

C +€2N2
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and
Fup(E, E') = fo(E)[1 — fp(EN]+ f(EN[1 — fu(E)]. (15)

In the above the sum is over all degrees of freedginthe Fermi functions’, (E) are defined
such thatf, = fo(E, — n) and f, = fo(E, + n) whereE, is the energy of a particle (hole)
(¢ = p(h)) in the normal reservoir, which is at a chemical potentialfy(E) is the Fermi
function at the condensate chemical potential of the superconductingdglad (

Now we wish to evaluate equation (12) at equilibrium and zero temperature, to leading
order inhw. We find

Spo(®) = 2C5R || (16)
with an equilibrium charge relaxation resistance
LZaﬂ Tr(NaﬁNJﬁ)

= 17
22 [N5]? a7
Also we find at zero temperature to leading orde#|ivi| that
Spo(V) = 2C;Ryel|V| (18)
with a Schottky resistance
+ +
. iTr(N,,thh +Nh,,th) (19)

22 [Ns]?

4. Example

We now wish to consider the structure shown in figure 1. If there is only one edge state then
we can proceed to consider the situation when the gatesesthe edge state in the ar€a

In this case a particle (hole) transversing the lersgibrby the gate acquires a phagg(¢n),

this phase is determined by the potential in this region. This simplifies the s-matrix given by
equation (1) to

§o ( ro @XPpy 1 XD+ P) > 20)
ry ry exp iy
wherer,r* is the probability of normal reflectionR('$) from the N-S structures,r is the
probability of Andreev reflectionk5) andRYS + RS = 1. We can then write, for the edge
state described by the above scattering mattixgtdU* = (ds/d¢;)(d¢; /¢*dU*) and that
(dg,./q*dU*) = —27xdN, /dE, where dV, /dE is the particle (hole)X = p(h)) density of
states in the normal lead. After some algebra and assumNpgdE = dN,/dE = N we can
compare the charge relaxation resistance for the N—-S strudtngr%) @nd the same structure
but with both leads being normaRg’). We find R;"S = h/(2¢?RY5) and Rji\’ = h/(2¢%).
Hence in equilibrium we find for the spectra of the charge fluctuations that

he?N?R)SC?

NS _ A
$00@) = (e N rys .
and
he?N?C? _
N —

In the presence of an applied voltage we find the Schottky resist&jces: RYSh/(2¢2RYS)
andR) = RY(1— RN)h/e?, whereRY = 1— T is the probability of normal reflection when
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we have replaced the superconducting lead with a normal lead. Hence the non-equilibrium
charge fluctuations are given by

he?N?RYSRYNSC?

NS _
SQQ(V) - (c +62NRNS)2 eVl (23)
and
he?’N?TN RN C?
N —

The results above are for one edge state but the striking difference between the results for a
N-S system as compared to a system where both leads are normal occurs when more than
one edge state is present. To consider this scenario we shall focus on the particular example
of our scattering region being a quantum point contact. For such a system only one quantum
channel opens at a time, i.e. for all other open channels the transmission through the quantum
point contact is 1, in the case of an ideal superconducting interface this implies that, for these
open channel®”S = 1. Hence, considering an additional edge state which has perfect
transmission through the quantum point contact then this state generates no extra noise, and
no extra contribution to screening, i.e. the total added charge is €grio( this state is zero),

thus equations (21) and (23) remain valid, whef& and R are the reflection probabilities

for the opening quantum channel. This is in contrast to what happesj i) andSg, (V)

where, again no noise is added, but an extra screening charge is [9] for each edge state added,
thus reducing the charge fluctuations seen in the gate, as more edge states are introduced.

5. Conclusions

In this work we have shown how to calculate the screened charge fluctuations in a gated N-S
structure, we then proceeded to focus on the example of how charge fluctuations in the edge
states of an N-S system differ from those of a normal system. The most startling difference
is that for the example of a quantum point contact scatterer the screened charge fluctuations
are unaffected by the presence of extra edge states. This is in contrast to the normal case [9].
This can be understood in the context of the electrochemical capacitance which for the N-S
system is given by
e2NRYSC

NS __
C,° = T 2NRNS T NRYS (25)
For perfect Andreev reflection‘ﬁ’s = 0 in contrast to the normal system where the
electrochemical capacitance is given by
2
vy __ €eNC
= Ccren (26)

which for finite C and N implies Cﬁ’ # 0. Comparing the two above equations we see that
the introduction of Andreev reflection reduces the electrochemical capacitance. It has been
shown elsewhere that fluctuations in the charge in normal structures, as characteried by
and Ry, determines the dephasing rate [9]. We expect that such a relationship is also true
for normal superconducting hybrid structures. Finally induced currents have been observed
in gates which are coupled to normal conductors [10]. Here we see, from equation (25), that
charging is reduced in the presence of Andreev reflection and in the extreme case of perfect
Andreev reflection the charging is zero.

This work was supported by the Swiss National Science Foundation and by the TMR network
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