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Charge fluctuations in the edge states of
normal–superconducting hybrid nano-structures

Andrew M Martin, Thomas Gramespacher and Markus Büttiker

Département de Physique Théorique, Universit́e de Geǹeve, CH-1211 Geǹeve 4, Switzerland

Received 6 October 1999

Abstract. In this work we show how to calculate the equilibrium and non-equilibrium charge
fluctuations in a gated normal mesoscopic conductor which is attached to one normal lead and
one superconducting lead. We then consider an example where the structure is placed in a high
magnetic field, such that the transport is dominated by edge states. We calculate the equilibrium
and non-equilibrium charge fluctuations in the gate, for a single edge state, comparing our results
to those for the same system, but with two normal leads. We then consider the specific example of
a quantum point contact and calculate the charge fluctuations in the gate for more than one edge
state.

1. Introduction

Recently a methodology for calculating charge fluctuations in gated hybrid normal–
superconducting (N–S) systems has been formulated [1]. In this letter we implement this
methodology for one particularly relevant and enlightening example. We study the system
depicted in figure 1, i.e. a gated N–S system in a high magnetic field, where the transport in the
normal region is governed by edge states. We focus on calculating the charge fluctuations in
the edge states in the region�. This work coincides with recent experimental and theoretical
research into the properties of hybrid normal–superconducting structures in high magnetic
fields [2–5].

In this letter we first calculate the unscreened charge fluctuations for a general N–S
structure (section 2). Then we proceed to incorporate screening into the problem (section 3),
enabling us to calculate the spectra of charge fluctuations in a gated N–S structure. We show
that these spectra, at equilibrium, are determined by two quantities: the charge relaxation
resistance,Rq , and the electrochemical capacitanceCµ. In the presence of transport, we find
thatRq is replaced byRV , called here the Schottky resistance, which reflects the shot noise
of the structure. Then we focus on one particular example (section 4) an N–S structure in a
high magnetic field, see figure 1. In particular we are interested in the charge fluctuations in
the edge states in the region� of figure 1 which can be measured by observing the current
fluctuations at the gateSII (ω, V ) = ω2SQQ(ω, V ). We consider a general case of a single
edge state and an arbitrary scatterer and more than one edge state in the case where the scatterer
is a quantum point contact.
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Figure 1. Quantum point contact, in the presence of a high magnetic field, attached to one normal
lead and a superconducting lead, capacitively coupled to a macroscopic gate. The solid (dashed)
lines depict themotionof the electron (hole) edge states.

2. Calculating the unscreened charge fluctuations

Consider a conductor where we have one normal lead and one superconducting lead, we can
write an effective 2× 2 scattering matrix for this system,

Ŝ =
(

spp shp

sph shh

)
(1)

where thesµλ are elements of the scattering matrix describing the process of an electron
(λ = p) or hole (λ = h) entering from the normal lead and an electron (µ = p) or hole
(µ = h) returning to the normal lead. Making use of thisŜ-matrix [1, 6] we can write down
the local particle density of states elements at positionr as

N η

αβ(λ, r) = −1

4πi

[
s

†
λα(E, U(r))

∂sλβ(E, U(r))

qη∂Uη(r)
− sλα(E, U(r))

∂s
†
λβ(E, U(r))

qη∂Uη(r)

]
(2)

whereα, β, λ andη denote the electron/hole degrees of freedom (p/h) andqp = e = −qh.
The functional derivatives are taken at the equilibrium electrostatic potentialUp = Uh = Ueq .
To give an example,N h

ph(h, r) is the hole density associated with an electron and a hole current
amplitude incident from the normal lead and reflected back into the normal lead as an outgoing
hole amplitude. With the help of this basic expression we can now find both the average density
of states as well as the fluctuations. The total bare charge fluctuations in the conductor are
given by

Nαβ = −N h
αβ + N p

αβ (3)

where

N η

αβ =
∫

�

d3r
∑

λ

N η

αβ(λ, r). (4)

The hole density of states of a region� of the conductor isNh = Nh(p) + Nh(h) where

Nh(α) =
∑

λ

∫
�

d3rTr[N h
αα(λ, r)] (5)
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and the electron density of states isNp = Np(p) + Np(h) with

Np(α) =
∑

λ

∫
�

d3rTr[N p
αα(λ, r)]. (6)

The trace is over open quantum channels,Nα(β) is the injectivity of electrons (holes)
(β = p(h)), from the normal lead into the conductor, given a change in the particle (hole)
potential (α = p(h)).

The fluctuations of the bare charge in a region� of interest can be found from the charge
operatoreN̂ given by

eN̂ (ω) =
∑

αβ

ηλ

∫
�

d3r

∫
dE[â†

α(E)qηN η

αβ(λ, r; E, E + h̄ω)âβ(E + h̄ω)] (7)

where the zero-frequency limit ofN η

αβ(λ, r; E, E+h̄ω) is given by equation (2). In equation (7),
â†

α(E) (âα(E)) creates (annihilates) an incoming electron/hole (α = p/h) in the normal lead.
The true charge fluctuations must be obtained by taking into account the Coulomb interaction
and below we show how to obtain the true charge fluctuations from the fluctuations of the bare
charges.

3. Calculating the total charge fluctuations

Consider an N–S system where we have a gate, Coulomb coupled, to a region,�, of the normal
part of the system. Then, assuming the gate has no dynamics of its own, the charge in the region
coupled to the gate is given bŷQ = CÛ whereÛ is the operator for the internal potential of
the conductor. Also we can determine the chargeQ̂ as the sum of the bare charge fluctuations
eN̂ and the induced charges generated by the fluctuating induced electrical potential. In the
random phase approximation the induced charges are proportional to the average frequency-
dependent density of statesN6(ω) times the fluctuating potential. Hence, the net charge can
be written asQ̂ = CÛ = eN̂ − e2N6(ω)Û , this is the direct analogue of the result for a
system with two normal leads [7]. Thus

Û = GeN̂ (8)

where

G(ω) = 1

C + e2N6(ω)
(9)

and the total density of states is

N6 = 1
2[Np(p) − Np(h) + Nh(h) − Nh(p)]. (10)

We now wish to find the fluctuation spectra of the internal potential [8]

2πSUU(ω)δ(ω − ω′) = (1/2)〈Û (ω)Û(ω′) + Û (ω′)Û(ω)〉. (11)

Solving the above and making use of the fact thatC2SUU(ω, V ) = SQQ(ω, V ) we find

SQQ(ω, V ) = (1/2)C2
µN−2

6

∑
αβ

∫
dEFαβ(E, E + h̄ω)Tr[Nαβ(E, E + h̄ω)N †

αβ(E, E + h̄ω)]

(12)

where

Nαβ(E, E′) =
∑
ηλ

sgn(qη)

∫
�

d3rN η

αβ(λ, r; E, E′) (13)

Cµ = Ce2N6

C + e2N6

(14)
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and

Fαβ(E, E′) = fα(E)[1 − fβ(E′)] + fβ(E′)[1 − fα(E)]. (15)

In the above the sum is over all degrees of freedomαβ, the Fermi functionsfα(E) are defined
such thatfp = f0(Ep − µ) andfh = f0(Eh + µ) whereEα is the energy of a particle (hole)
(α = p(h)) in the normal reservoir, which is at a chemical potentialµ, f0(E) is the Fermi
function at the condensate chemical potential of the superconducting lead (µ0).

Now we wish to evaluate equation (12) at equilibrium and zero temperature, to leading
order inh̄ω. We find

SQQ(ω) = 2C2
µRqh̄|ω| (16)

with an equilibrium charge relaxation resistance

Rq = h

2e2

∑
αβ Tr(NαβN †

αβ)

[N6 ]2
. (17)

Also we find at zero temperature to leading order ine|V | that

SQQ(V ) = 2C2
µRV e|V | (18)

with a Schottky resistance

RV = h

2e2

Tr(NphN †
ph + NhpN †

hp)

[N6 ]2
. (19)

4. Example

We now wish to consider the structure shown in figure 1. If there is only one edge state then
we can proceed to consider the situation when the gate onlyseesthe edge state in the area�.
In this case a particle (hole) transversing the lengthseenby the gate acquires a phaseφp (φh),
this phase is determined by the potential in this region. This simplifies the s-matrix given by
equation (1) to

Ŝ =
(

ro exp iφp ra exp i(φp + φh)

r?
a r?

o exp iφh

)
(20)

whereror
?
o is the probability of normal reflection (RNS

o ) from the N–S structure,rar
?
a is the

probability of Andreev reflection (RNS
a ) andRNS

a + RNS
o = 1. We can then write, for the edge

state described by the above scattering matrix, ds/qλdUλ = (ds/dφλ)(dφλ/q
λdUλ) and that

(dφλ/q
λdUλ) = −2πdNλ/dE, where dNλ/dE is the particle (hole) (λ = p(h)) density of

states in the normal lead. After some algebra and assuming dNh/dE = dNp/dE = N we can
compare the charge relaxation resistance for the N–S structure (RNS

q ) and the same structure
but with both leads being normal (RN

q ). We findRNS
q = h/(2e2RNS

o ) andRN
q = h/(2e2).

Hence in equilibrium we find for the spectra of the charge fluctuations that

SNS
QQ(ω) = he2N2RNS

o C2

(C + e2NRNS
o )2

h̄|ω| (21)

and

SN
QQ(ω) = he2N2C2

(C + e2N)2
h̄|ω|. (22)

In the presence of an applied voltage we find the Schottky resistancesRNS
V = RNS

a h/(2e2RNS
o )

andRN
V = RN

o (1−RN
o )h/e2, whereRN

o = 1−T N
o is the probability of normal reflection when
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we have replaced the superconducting lead with a normal lead. Hence the non-equilibrium
charge fluctuations are given by

SNS
QQ(V ) = he2N2RNS

o RNS
a C2

(C + e2NRNS
o )2

e|V | (23)

and

SN
QQ(V ) = he2N2T N

o RN
o C2

(C + e2N)2
e|V |. (24)

The results above are for one edge state but the striking difference between the results for a
N–S system as compared to a system where both leads are normal occurs when more than
one edge state is present. To consider this scenario we shall focus on the particular example
of our scattering region being a quantum point contact. For such a system only one quantum
channel opens at a time, i.e. for all other open channels the transmission through the quantum
point contact is 1, in the case of an ideal superconducting interface this implies that, for these
open channelsRNS

a = 1. Hence, considering an additional edge state which has perfect
transmission through the quantum point contact then this state generates no extra noise, and
no extra contribution to screening, i.e. the total added charge is zero (Cµ for this state is zero),
thus equations (21) and (23) remain valid, whereRNS

o andRNS
a are the reflection probabilities

for the opening quantum channel. This is in contrast to what happens toSN
QQ(ω) andSN

QQ(V )

where, again no noise is added, but an extra screening charge is [9] for each edge state added,
thus reducing the charge fluctuations seen in the gate, as more edge states are introduced.

5. Conclusions

In this work we have shown how to calculate the screened charge fluctuations in a gated N–S
structure, we then proceeded to focus on the example of how charge fluctuations in the edge
states of an N–S system differ from those of a normal system. The most startling difference
is that for the example of a quantum point contact scatterer the screened charge fluctuations
are unaffected by the presence of extra edge states. This is in contrast to the normal case [9].
This can be understood in the context of the electrochemical capacitance which for the N–S
system is given by

CNS
µ = e2NRNS

o C

C + e2NRNS
o

. (25)

For perfect Andreev reflectionCNS
µ = 0 in contrast to the normal system where the

electrochemical capacitance is given by

CN
µ = e2NC

C + e2N
(26)

which for finiteC andN impliesCN
µ 6= 0. Comparing the two above equations we see that

the introduction of Andreev reflection reduces the electrochemical capacitance. It has been
shown elsewhere that fluctuations in the charge in normal structures, as characterized byRq

andRV , determines the dephasing rate [9]. We expect that such a relationship is also true
for normal superconducting hybrid structures. Finally induced currents have been observed
in gates which are coupled to normal conductors [10]. Here we see, from equation (25), that
charging is reduced in the presence of Andreev reflection and in the extreme case of perfect
Andreev reflection the charging is zero.

This work was supported by the Swiss National Science Foundation and by the TMR network
Dynamics of Nanostructures.
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